Bifurcations, Intersections, and Heights

نویسنده

  • LAURA DE MARCO
چکیده

In this article, we prove the equivalence of dynamical stability, preperiodicity, and canonical height 0, for algebraic families of rational maps ft : P(C)→ P(C), parameterized by t in a quasi-projective complex variety. We use this to prove one implication in the if-and-only-if statement of [BD2, Conjecture 1.10] on unlikely intersections in the moduli space of rational maps; we present the conjecture here in a more general form.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heights of Heegner cycles and derivatives of L-series

0. Introduction ................................................................................................................. 99 1. Intersections and heights ............................................................................................. 103 2. Kuga-Sato varieties and CM-cycles ............................................................................117 3. Heights of CM-cyc...

متن کامل

Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps.

We study families of volume preserving diffeomorphisms in R(3) that have a pair of hyperbolic fixed points with intersecting codimension one stable and unstable manifolds. Our goal is to elucidate the topology of the intersections and how it changes with the parameters of the system. We show that the "primary intersection" of the stable and unstable manifolds is generically a neat submanifold o...

متن کامل

On Evolute Cusps and Skeleton Bifurcations

Consider a 2D smooth closed curve evolving in time, the skeleton (medial axis) of the figure bounded by the curve, and the evolute of the curve. A new branch of the skeleton can appear / disappear when an evolute cusp intersects the skeleton. In this paper, we describe exact conditions of the skeleton bifurcations corresponding to such intersections. Similar results are also obtained for 3D sur...

متن کامل

Heights of Heegner Points on Shimura Curves

Introduction 2 1. Shimura curves 6 1.1. Modular interpretation 6 1.2. Integral models 13 1.3. Reductions of models 17 1.4. Hecke correspondences 18 1.5. Order R and its level structure 25 2. Heegner points 29 2.1. CM-points 29 2.2. Formal groups 34 2.3. Endomorphisms 37 2.4. Liftings of distinguished points 40 3. Modular forms and L-functions 43 3.1. Modular forms 44 3.2. Newforms on X 49 3.3. ...

متن کامل

Topological Classification of Limit Cycles of Piecewise Smooth Dynamical Systems and Its Associated Non-Standard Bifurcations

In this paper, we propose a novel strategy for the synthesis and the classification of nonsmooth limit cycles and its bifurcations (named Non-Standard Bifurcations or Discontinuity Induced Bifurcations or DIBs) in n-dimensional piecewise-smooth dynamical systems, particularly Continuous PWS and Discontinuous PWS (or Filippov-type PWS) systems. The proposed qualitative approach explicitly includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016